The University of Iowa
The University of Iowa News Services Home News Releases UI in the News Subscribe to UI News Contact Us


283 Medical Laboratories
Iowa City IA 52242
(319) 335-6660; fax (319) 335-8034

Release: Immediate

Studies indicate an effective treatment for steroid-induced osteoporosis

IOWA CITY, Iowa -- University of Iowa researchers, as well as other researchers, report in the July 30 issue of The New England Journal of Medicine that the drug alendronate (marketed as Fosamax) may help prevent and treat steroid-induced osteoporosis.

UI researchers, led by Kenneth Saag, M.D., assistant professor of internal medicine, and investigators from 14 other U.S. and 22 international sites, detail the results of two 48-week studies of 477 men and women ages 17 to 83 receiving 7.5 mg or greater of prednisone (or equivalent) daily. The studies examined the effectiveness of alendronate in preventing and treating osteoporosis among patients undergoing steroid therapy.

"Steroids such as prednisone are often prescribed by doctors for a number of medical conditions, including rheumatoid arthritis, asthma and inflammatory bowel disease," Saag said. "While steroids are effective in treating these diseases, osteoporosis is often an unavoidable, yet serious, long-term side effect."

Patients in the studies received either an oral dose of alendronate (5 mg to 10 mg) or an inactive placebo. All the patients also were given calcium (800 mg to 1000 mg) and vitamin D supplements (250 to 500 IU), which are currently recommended for preventing and treating steroid-induced osteoporosis.

The researchers found that either dose of alendronate, added to calcium and vitamin D, significantly increased bone mineral density (BMD) -- the most important predictor of fracture risk -- at the spine and hip in men and women taking steroids compared with placebo (calcium and vitamin D). The results were consistent, regardless of the patient's age, gender, underlying disease, dosage or length of time on steroid therapy.

Increase in spine BMD was highest in post-menopausal women not taking estrogen who received 10 mg of alendronate, the researchers noted. Post-menopausal women taking steroid treatments are among those at the highest risk for steroid-induced osteoporosis, due to the combined detrimental effects of estrogen deficiency and steroids on their bones.

The studies also showed fewer patients on alendronate had spine fractures compared with those patients on placebo.

Researchers already knew that alendronate could prevent and treat postmenopausal osteoporosis and prevent fractures, Saag noted, but the new study findings show that the drug can also play a role in preventing and treating osteoporosis caused by steroids.

Of the 30 million American men and women who have diseases that may require treatment with glucocorticoid steroids, an estimated one million people presently use them on a chronic basis.

"Early intervention is critical because steroid users lose large amounts of bone and lose it rapidly -- as much as 10 to 20 percent in the first year of steroid treatment," Saag said. "Approximately 50 percent of chronic steroid users develop osteoporosis, increasing their risk for fractures. Calcium and vitamin D supplements, hormone replacement therapy and exercise have been the recommended modes of therapy, but our studies show that alendronate provides additional benefit over and above calcium plus vitamin D."

In the studies, alendronate at 5 and 10 mg was generally well tolerated. Esophageal adverse experiences were not increased with alendronate treatment, nor were peptic ulcers despite concurrent use of steroids in all patients and extensive use of aspirin, non-steroidal anti-inflammatories and slow-acting anti-rheumatic drugs.

Alendronate, marketed by Merck and Co., Inc., was first approved by the U.S. Food and Drug Administration in late 1995. It has been prescribed for approximately 2.4 million people in the United States for the treatment and prevention of post-menopausal osteoporosis and for the treatment of Paget's disease of bone.